首页 | 本学科首页   官方微博 | 高级检索  
检索        


Functional desensitization of the extracellular calcium-sensing receptor is regulated via distinct mechanisms: role of G protein-coupled receptor kinases, protein kinase C and beta-arrestins
Authors:Lorenz Stephan  Frenzel Romy  Paschke Ralf  Breitwieser Gerda E  Miedlich Susanne U
Institution:III. Medical Department, Leipzig University, Germany.
Abstract:The extracellular calcium-sensing receptor (CaR) senses small fluctuations of the extracellular calcium (Ca(2+)(e)) concentration and translates them into potent changes in parathyroid hormone secretion. Dissecting the regulatory mechanisms of CaR-mediated signal transduction may provide insights into the physiology of the receptor and identify new molecules as potential drug targets for the treatment of osteoporosis and/or hyperparathyroidism. CaR can be phosphorylated by protein kinase C (PKC) and G protein-coupled receptor kinases (GRKs), and has been shown to bind to beta-arrestins, potentially contributing to desensitization of CaR, although the mechanisms by which CaR-mediated signal transduction is terminated are not known. We used a PKC phosphorylation site-deficient CaR, GRK and beta-arrestin overexpression or down-regulation to delineate CaR-mediated desensitization. Fluorescence-activated cell sorting was used to determine whether receptor internalization contributed to desensitization. Overexpression of GRK 2 or 3 reduced Ca(2+)(e)-dependent inositol phosphate accumulation by more than 70%, whereas a GRK 2 mutant deficient in G alpha(q) binding (D110A) was without major effect. Overexpression of GRK 4-6 did not reduce Ca(2+)(e)-dependent inositol phosphate accumulation. Overexpression of beta-arrestin 1 or 2 revealed a modest inhibitory effect on Ca(2+)(e)-dependent inositol phosphate production (20-30%), which was not observed for the PKC phosphorylation site-deficient CaR. Agonist-dependent receptor internalization (10-15%) did not account for the described effects. Thus, we conclude that PKC phosphorylation of CaR contributes to beta-arrestin-dependent desensitization of CaR coupling to G proteins. In contrast, GRK 2 predominantly interferes with G protein-mediated inositol-1,4,5-trisphosphate formation by binding to G alpha(q).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号