Department of Radiological Sciences, B3-227U Center for Health Sciences, UCLA School of Medicine, Box 951721, Los Angeles, CA 90095-1721, USA
Abstract:
In this project, patients with a solitary pulmonary nodule, were imaged using high resolution computed tomography. Quantitative measures of texture were extracted from these images using co-occurrence matrices. These matrices were formed with different combinations of gray level quantization, distance between pixels and angles. The derived measures were input to a linear discriminant classifier to predict the classification (benign or malignant) of each nodule. Using a relative quantization scheme with eight levels, four features yielded an area under the ROC curve (Az) of 0.992; 93.8% (30/32) of cases were correctly classified when training and testing on the same cases; while 90.6% (29/32) were correctly classified when jackknifing was used.