Abstract: | OBJECTIVE: We aimed to achieve angiogenic synergism between human vascular endothelial growth factor 165 (VEGF 165 ) and angiopoietin-1 (Ang-1) using a new adenoviral bicistronic vector concurrently with cell therapy to repair an ischemically damaged hind limb in a rabbit model. METHODS: Rabbit autologous primary skeletal myoblasts were isolated and labeled with retrovirally transduced LacZreporter gene, 4,6-diamidino-2-phenylindole (DAPI), and 5-bromo-2'-deoxyuridine (BrdU). Hind limb ischemia was created in 48 female New Zealand White rabbits by means of femoral artery ligation at 8 different places, and was assessed at angiography. Animals were randomized to receive intramuscular injection of either Dulbeco's Modified Eagle Medium (DMEM;group 1, n = 8), nontransduced myoblasts (group 2, n = 10), or myoblasts transduced with Ad-Null (group 3, n = 10), Ad-VEGF (group 4, n = 10), or Ad-Bicis (group 5, n = 8). Six weeks after treatment neovascularization in the limb was assessed at angiography. The animals were euthanized, and tissue was harvested for histologic study. RESULTS: Extensive transplanted myoblast survival was observed in all cell-transplanted groups, as visualized with DAPI, BrdU, and LacZ staining. Angiographic blood vessel count revealed enhanced neovascularization in group 5 (25.14 +/- 5.14) compared with group 4 (13.62 +/- 4.52), group 3 (6.09 +/- 0.09), group 2 (4.67 +/- 3.49), and group 1 (3.18 +/- 7.76). Immunostaining for von Willebrand factor confirmed significantly increased capillary density ( P < .01) at high-power microscopic field in group 5 (19.04 +/- 1.59) compared with group 4 (15.31 +/- 1.55), group 3 (6.53 +/- 0.97), group 2 (5.69 +/- 0.51), and group 1 (3.03 +/- 0.20). CONCLUSION: Simultaneous expression of VEGF and Ang-1 from bicistronic vector transduced skeletal myoblasts potently stimulated enhanced functional neovascularization in a rabbit model of limb ischemia. |