首页 | 本学科首页   官方微博 | 高级检索  
     

基于持续时间隐马尔可夫模型的心音分割算法
作者姓名:奎皓然  潘家华  宗容  杨宏波  粟炜  王威廉
作者单位:1. 云南大学信息学院;2. 云南省阜外心血管病医院
基金项目:国家自然科学基金资助项目(61261008,81060067);
摘    要:心音分割指对所获取的心音信号按心动周期对收缩期、舒张期等进行分隔,是进行心音分类前的关键步骤。针对不依赖心电图对心音信号直接分割准确度有限的难题,提出了一种基于持续时间隐马尔可夫模型的心音分割算法。首先对心音样本进行位置标注;然后采用自相关估计法对心音的心动周期持续时间进行估计,通过高斯混合分布对样本的状态持续时间进行建模;接着通过训练集信号对隐马尔可夫模型进行优化并建立基于持续时间的隐马尔可夫模型(DHMM);最后使用维特比算法对心音状态进行回溯得出S1、收缩期、S2、舒张期。使用500例心音样本对本文算法性能进行测试,平均评估精度分数(F1)为0.933,平均灵敏度为0.930,平均精确率为0.936。同其他算法相比,本文算法各项性能指标均有明显提升,证实了该算法具有较高的鲁棒性和抗噪声性能,为临床环境下所采集心音信号的特征提取与分析提供了一种新方法。

关 键 词:心音分割  自相关估计  高斯混合分布  基于持续时间的隐马尔可夫模型  维特比算法
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号