首页 | 本学科首页   官方微博 | 高级检索  
     


Improved methods for predicting peptide binding affinity to MHC class II molecules
Authors:Kamilla Kjærgaard Jensen  Massimo Andreatta  Paolo Marcatili  Søren Buus  Jason A. Greenbaum  Zhen Yan  Alessandro Sette  Bjoern Peters  Morten Nielsen
Affiliation:1. Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark;2. Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina;3. Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark;4. Bioinformatics Core Facility, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA;5. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA;6. Department of Medicine, University of California San Diego, La Jolla, CA, USA
Abstract:Major histocompatibility complex class II (MHC‐II) molecules are expressed on the surface of professional antigen‐presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC‐II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T‐cell epitopes. We here present updated versions of two MHC–II–peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC–peptide binding affinity data obtained from the Immune Epitope Database covering HLA‐DR, HLA‐DQ, HLA‐DP and H‐2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2 .
Keywords:affinity predictions  immunogenic peptides  MHC binding specificity  peptide–  MHC binding  T‐cell epitope
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号