首页 | 本学科首页   官方微博 | 高级检索  
     


N- and C-terminal domains in human holocarboxylase synthetase participate in substrate recognition
Authors:Yousef I. Hassan   Hideaki Moriyama   Lars J. Olsen   Xin Bi  Janos Zempleni  
Affiliation:aDepartment of Nutrition and Health Sciences, University of Nebraska at Lincoln, 316 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA;bDepartment of Chemistry, University of Nebraska-Lincoln, NE 68588-0304, USA;cDepartment of Biology, University of Rochester, NY 14627-0211, USA
Abstract:Holocarboxylase synthetase (HCS) catalyzes the binding of the vitamin biotin to carboxylases and histones. Carboxylases mediate essential steps in macronutrient metabolism. For example, propionyl-CoA carboxylase (PCC) catalyzes the carboxylation of propionyl-CoA in the metabolism of odd-chain fatty acids. HCS comprises four putative domains, i.e., the N-terminus, the biotin transfer/ATP-binding domain, a putative linker domain, and the C-terminus. Both N- and C-termini are essential for biotinylation of carboxylases by HCS, but the exact functions of these two domains in enzyme catalysis are unknown. Here we tested the hypothesis that N- and C-termini play roles in substrate recognition by HCS. Yeast-two-hybrid (Y2H) assays were used to study interactions between the four domains of human HCS with p67, a PCC-based polypeptide and HCS substrate. Both N- and C-termini interacted with p67 in Y2H assays, whereas the biotin transfer/ATP-binding and the linker domains did not interact with p67. The essentiality of N- and C-termini for interactions with carboxylases was confirmed in rescue experiments with mutant Saccharomyces cerevisiae, using constructs of truncated human HCS. Finally, a computational biology approach was used to model the 3D structure of human HCS and identify amino acid residues that interact with p67. In silico predictions were consistent with observations from Y2H assays and yeast rescue experiments, and suggested docking of p67 near Arg508 and Ser515 within the central domain of HCS.
Keywords:BirA   Holocarboxylase synthetase   Domains   p67   Propionyl-CoA carboxylase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号