首页 | 本学科首页   官方微博 | 高级检索  
     


Design of mutant beta2 subunits as decoy molecules to reduce the expression of functional Ca2+ channels in cardiac cells
Authors:Télémaque Sabine  Sonkusare Swapnil  Grain Terrie  Rhee Sung W  Stimers Joseph R  Rusch Nancy J  Marsh James D
Affiliation:Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, #832, Little Rock, AR 72205, USA. stelemaque@uams.edu
Abstract:Calcium influx through long-lasting ("L-type") Ca(2+) channels (Ca(V)) drives excitation-contraction in the normal heart. Dysregulation of this process contributes to Ca(2+) overload, and interventions that reduce expression of the pore-forming alpha(1) subunit may alleviate cytosolic Ca(2+) excess. As a molecular approach to disrupt the assembly of Ca(V)1.2 (alpha(1C)) channels at the cell membrane, we targeted the Ca(2+) channel beta(2) subunit, an intracellular chaperone that interacts with alpha(1C) via its beta interaction domain (BID) to promote Ca(V)1.2 channel expression. Recombinant adenovirus expressing either the full beta(2) subunit (Full-beta(2)) or truncated beta(2) subunit constructs lacking either the C terminus, N terminus, or both (N-BID, C-BID, and BID, respectively) fused to green fluorescent protein were developed as potential decoys and overexpressed in HL-1 cells. Fluorescence microscopy revealed that the localization of Full-beta(2) at the surface membrane was associated with increased Ca(2+) current mainly attributed to Ca(V)1.2 channels. In contrast, truncated N-BID and C-BID constructs showed punctate intracellular expression, and BID showed a diffuse cytosolic distribution. Total expression of the alpha(1C) protein of Ca(V)1.2 channels was similar between groups, but HL-1 cells overexpressing C-BID and BID exhibited reduced Ca(2+) current. C-BID and BID also attenuated Ca(2+) current associated with another L-type Ca(2+) channel, Ca(V)1.3, but they did not reduce transient Ca(2+) currents attributed to Ca(V)3 channels. These results suggest that beta(2) subunit mutants lacking the N terminus may preferentially disrupt the proper localization of L-type Ca(2+) channels in the cell membrane. Cardiac-specific delivery of these decoy molecules in vivo may represent a gene-based treatment for pathologies involving Ca(2+) overload.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号