首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of initial component temperature on the apparent viscosity and handling characteristics of acrylic (PMMA) bone cement
Authors:Sullivan Stacey J Losaw  Topoleski L D Timmie
Affiliation:Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA. stacey.sullivan@umbc.edu
Abstract:The flow and polymerization characteristics of poly(methylmethacrylate) (PMMA) bone cement can be changed by manipulating the temperature of the bone cement components or the environment that they are prepared in. To quantify the effects of the initial component temperature (T(ic)) of acrylic bone cement on the rheological and handling characteristics, ASTM F451-99a compliant methods and clinically relevant testing methods were utilized. A rheometer was designed and fabricated using the dimensions of a clinical, commercially available, cement gun and nozzle. The influence on the apparent viscosity and handling characteristics (setting time, working time, and peak exotherm temperature) for a high viscosity (HV) commercially-available acrylic bone cement, Palacos R, were determined. The values of T(ic) used were 23 degrees C (room), 6 degrees C (refrigerator), and -14 degrees C (freezer). Using the apparent viscosity of a medium viscosity (MV) bone cement as a benchmark (Simplex P at room temperature), it was found that by adjusting the T(ic) the HV cement was able to mimic the flow characteristics of the MV cement. Lowering the T(ic) lowered the apparent viscosity of the bone cement. The effects of T(ic) on the polymerization of bone cement were studied in dynamic and static conditions. The dynamic test recorded temperature and torque from stirring resistance. Setting times were also determined using the ASTM exotherm mold method. The setting times determined by the dynamic testing conditions were consistently shorter than those determined by the ASTM method. Lowering the T(ic) increased the working and setting times; however, it did not have a significant effect on the peak exotherm temperature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号