Investigation of solute concentrations in a 3D model of intervertebral disc |
| |
Authors: | D. Mokhbi Soukane A. Shirazi-Adl J. P. G. Urban |
| |
Affiliation: | (1) Department of Mechanical Engineering, école Polytechnique, P.O. Box 6079, Station ‘centre-ville’, Montreal, QC, H3C 3A7, Canada;(2) Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK |
| |
Abstract: | As the disc is the largest avascular structure in the body, disc cells depend for their normal function on an adequate supply of nutrients (oxygen and glucose) and the removal of metabolic by-products (lactic acid) via blood vessels at the cartilaginous endplates and annulus periphery. Concentration gradients develop depending on the balance between the rates of transport and rates of cellular activity. Since consumption and production rates are coupled via extracellular pH, the gradients are interdependent. This is a novel model study which takes into account the realistic 3D geometry of a L5-S1 lumbar disc in solving the nonlinear coupled diffusion equations. Effects of perturbations (calcification, sclerosis) in endplates, increases in cell metabolic rates following growth factor injection and changes in lumbar posture (kyphotic or lordotic) on extreme values of nutrient and metabolite concentrations and their spatial locations are investigated. Solute concentrations, particularly those of glucose, substantially diminish as a consequence of disturbances in supply at the endplates, increases in cell metabolic rate and more lordotic postures. Results, when compared to those from simplified axisymmetric models, demonstrate the importance of consideration of realistic 3D disc geometry. |
| |
Keywords: | 3D disc geometry Finite element method Nonlinear diffusion Oxygen Glucose |
本文献已被 SpringerLink 等数据库收录! |
|