首页 | 本学科首页   官方微博 | 高级检索  
检索        


Intratracheal Surfactant Administration Preserves Airway Compliance During Lung Reperfusion
Authors:Scott A Buchanan  Michael C Mauney  Vikas I Parekh  Nuno F DeLima  Oliver AR Binns  Jeffrey T Cope  Kimberly S Shockey  Curtis G Tribble  Irving L Kron
Institution:

Thoracic and Cardiovascular Research Laboratory, Department of Surgery, University of Virginia Health Sciences Center, Charlottesville, Virginia, USA

Abstract:Background. Decreased airway compliance after lung transplantation has been observed with severe ischemia-reperfusion injury. Further, it has been shown that the surfactant system is impaired after lung preservation and reperfusion. We hypothesized that surfactant replacement after allograft storage could preserve airway compliance during reperfusion.

Methods. Rabbit lungs were harvested after flush with 50 mL/kg of cold saline solution. Immediate control lungs were studied with an isolated ventilation/perfusion apparatus using venous rabbit blood recirculated at 40 mL/min, room-air ventilation at 20 breaths/min, and constant airway pressure (n = 8). Twenty-four-hour control lungs were preserved at 4°C for 24 hours and then similarly studied (n = 7). Surfactant lungs underwent similar harvest and preservation for 24 hours, but received 1.5 mL/kg of intratracheal surfactant 5 minutes before reperfusion (n = 10). Airway pressure and flow were recorded continuously during 30 minutes of reperfusion. Tidal volume and airway compliance were calculated at 30 minutes.

Results. Tidal volume was 33.67 ± 0.57, 15.75 ± 5.72, and 29.83 ± 1.07 mL in the immediate control, 24-hour control, and surfactant groups, respectively (p = 0.004, surfactant versus 24-hour control). Airway compliance was 1.94 ± 0.27, 0.70 ± 0.09, and 1.46 ± 0.10 mL/mm Hg in the immediate control, 24-hour control, and surfactant groups, respectively (p = 0.002, surfactant versus 24-hour control).

Conclusions. We conclude that surfactant administration before reperfusion after 24 hours of cold storage preserves tidal volume and airway compliance in the isolated ventilated/perfused rabbit model of lung reperfusion injury.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号