首页 | 本学科首页   官方微博 | 高级检索  
     


Immunology and immunotherapy of neuroblastoma
Authors:Seeger Robert C
Affiliation:aChildren's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, United States;bKeck School of Medicine, University of Southern California, Los Angeles, CA, United States
Abstract:

Purpose

This review demonstrates the importance of immunobiology and immunotherapy research for understanding and treating neuroblastoma.

Principal results

The first suggestions of immune system–neuroblastoma interactions came from in vitro experiments showing that lymphocytes from patients were cytotoxic for their own tumor cells and from evaluations of tumors from patients that showed infiltrations of immune system cells. With the development of monoclonal antibody (mAb) technology, a number of mAbs were generated against neuroblastoma cells lines and were used to define tumor associated antigens. Disialoganglioside (GD2) is one such antigen that is highly expressed by virtually all neuroblastoma cells and so is a useful target for both identification and treatment of tumor cells with mAbs. Preclinical research using in vitro and transplantable tumor models of neuroblastoma has demonstrated that cytotoxic T lymphocytes (CTLs) can specifically recognize and kill tumor cells as a result of vaccination or of genetic engineering that endows them with chimeric antigen receptors. However, CTL based clinical trials have not progressed beyond pilot and phase I studies. In contrast, anti-GD2 mAbs have been extensively studied and modified in pre-clinical experiments and have progressed from phase I through phase III clinical trials. Thus, the one proven beneficial immunotherapy for patients with high-risk neuroblastoma uses a chimeric anti-GD2 mAb combined with IL-2 and GM-CSF to treat patients after they have received intensive cyto-reductive chemotherapy, irradiation, and surgery. Ongoing pre-clinical and clinical research emphasizes vaccine, adoptive cell therapy, and mAb strategies. Recently it was shown that the neuroblastoma microenvironment is immunosuppressive and tumor growth promoting, and strategies to overcome this are being developed to enhance anti-tumor immunotherapy.

Conclusions

Our understanding of the immunobiology of neuroblastoma has increased immensely over the past 40 years, and clinical translation has shown that mAb based immunotherapy can contribute to improving treatment for high-risk patients. Continued immunobiology and pre-clinical therapeutic research will be translated into even more effective immunotherapeutic strategies that will be integrated with new cytotoxic drug and irradiation therapies to improve survival and quality of life for patients with high-risk neuroblastoma.
Keywords:Abbreviations: mAb, monoclonal antibody   CTL, cytotoxic T lymphocyte   GD2, disialoganglioside   EFS, event-free survival   NKT, Vα24-invariant (type I) natural killer T cell   NK cell, natural killer cell   ADCC, antibody dependent cellular cytotoxicity   AHSCT, autologous hematopoietic stem cell transplantation   TAM, tumor associated macrophage   Tregs, T regulatory cells
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号