首页 | 本学科首页   官方微博 | 高级检索  
     


Erythropoietin and its antagonist regulate hypoxic fictive breathing in newborn mice
Authors:Khemiri Hanan  Seaborn Tommy  Gestreau Christian  Soliz Jorge
Affiliation:1. Départment de Pédiatrie, Centre de Recherche de l’Hôpital St-François d’Assise (CR-SFA), Centre Hospitalier Universitaire de Québec (CHUQ), Faculté de Médecine, Université Laval, Québec, QC, Canada;2. Maturation, Plasticity, Physiology and Pathology of Respiration, Unité Mixte de Recherche 6231 CNRS, Faculté Saint-Jérôme, Marseille, France
Abstract:Clinical use of erythropoietin in adult and newborn patients has revealed its involvement in neuroprotection, neurogenesis, and angiogenesis. More recently, we showed in adult mouse, that brain erythropoietin interacts with the major brainstem centers associated with respiration to enhance the ventilatory response to acute and chronic conditions of physiological hypoxia (e.g., as occurring at high altitude). However, whether brain erythropoietin is involved in breathing regulation in newborns remains unknown. In this study, en bloc brainstem-spinal cord preparations were obtained from mice at postnatal day 4. After various periods (30, 60, or 90 min) of incubation with 0, 25, or 250 U of erythropoietin, preparations were superfused with artificial cerebrospinal fluid bubbled with normoxic or hypoxic gas mixtures. The electrophysiological fictive breathing produced by axons at the C4 ventral root was next recorded. Our results show that erythropoietin attenuates the hypoxia-mediated decrease of the central respiratory activity and improves post-hypoxic recovery. Additional analysis revealed that the soluble erythropoietin receptor (the endogenous erythropoietin antagonist) dramatically decreases neural hypoxic respiratory activity, confirming the specific erythropoietin effect on respiratory drive. These results imply that erythropoietin exerts main modulation and maintenance of respiratory motor output during hypoxic and post-hypoxic challenges in 4-days old mice.
Keywords:Brainstem   Electrophysiology   Hypoxia
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号