首页 | 本学科首页   官方微博 | 高级检索  
     

基于复杂性测度的EEG初步研究
引用本文:王品,郑小林,彭承琳,董为伟,王永红. 基于复杂性测度的EEG初步研究[J]. 生物医学工程学杂志, 2002, 19(2): 229-231
作者姓名:王品  郑小林  彭承琳  董为伟  王永红
作者单位:1. 重庆大学,生物工程学院,重庆,400044
2. 重庆医科大学,重庆,400016
摘    要:利用两种复杂性测度的方法对正常人和病人不同大脑负荷状态下的 EEG进行了分析。一种是 Kaspar和 Schuster定义的复杂度算法 ,一种是新的度量序列复杂度的统计方法 -近似熵。通过对若干例在四种不同实验状态下的 EEG信号的分析 ,表明可通过两种算法的数值变化有效地分辨大脑的状态 :正常或病理以及不同的负荷状态。而且两种复杂性测度算法的变化规律相同。显示出两种复杂性测度的算法在 EEG序列的研究和临床诊断中有广阔的应用前景

关 键 词:脑电  复杂度  近似熵
修稿时间:2000-12-18

Analysis of EEG Based on the Complexity Measure
Wang Pin Zheng Xiaolin Peng Chenglin Dong Weiwei Wang Yonghong. Analysis of EEG Based on the Complexity Measure[J]. Journal of biomedical engineering, 2002, 19(2): 229-231
Authors:Wang Pin Zheng Xiaolin Peng Chenglin Dong Weiwei Wang Yonghong
Affiliation:Wang Pin 1 Zheng Xiaolin 1 Peng Chenglin 1 Dong Weiwei 2 Wang Yonghong 2 1
Abstract:EEG represents the electric activity of neurons in human brain; it is of course repeatedly used for studying and analyzing the brain activity and the status of brain function. In this paper ,we analyzed the patients' and normal persons' EEG in different physiological state, with the aid of two algorithms as a complexity measure. One is Kc complexity defined by Kaspar and Schuster, the other is a new statistical method to measure complexity sequences Approximate entropy (ApEn).In our work, we analyzed two groups of persons' EEG. Six subjects in 4 different experimental condition are reported. From the results we can discriminate the different state of brain effectively :normal, being injured, and various thinking state.The result suggests that the two algorithms as a complexity measure could be regarded as valued methods in the study of EEG time series and clinical diagnosis.
Keywords:EEG Complexity Approximate entropy
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号