首页 | 本学科首页   官方微博 | 高级检索  
     

潜在类别分析在成年女性妇科病高危人群识别中的应用
引用本文:尹诗琪1,2,闫翔宇3,赵曼羽1,沈丽琴1,周涵闻1. 潜在类别分析在成年女性妇科病高危人群识别中的应用[J]. 现代预防医学, 2020, 0(10): 1798-1802
作者姓名:尹诗琪1  2  闫翔宇3  赵曼羽1  沈丽琴1  周涵闻1
作者单位:1. 四川大学华西公共卫生学院/四川大学华西第四医院,四川 成都610041;2.上海市浦东新区疾病预防控制中心,复旦大学浦东预防医学研究院,上海200136;3. 北京大学公共卫生学院,北京100191
摘    要:目的 初步确立成年女性妇科病患病风险的潜在类别,并探究各类别的特征区别及患病风险差异。方法 采用两阶段调查抽取成都市区18~60岁女性成年人进行匿名自填式问卷调查,共回收364份有效问卷。运用潜在类别分析对研究对象特征进行分类比较。结果 当潜在类别数目为2时模型拟合最佳,因两类人群的妇科病患病率不同,可分为低风险型和高风险型两个类别,患病率分别为14.1%和45.1%(OR = 4.987,P<0.05)。高风险型人群相对较为年长、较低学历、已婚、非学生、多无独居经历,性与生殖健康知识水平较低,发生过性行为者相对较多,性态度较为保守 (P<0.05)。结论 利用所构建的潜在类别模型,可识别出妇科病患病高危人群,为完善和制定有重点、有针对性的干预措施提供依据,以改善女性生殖健康水平、降低高危人群妇科病患病率。

关 键 词:成年女性  妇科病  患病风险  潜在类别分析

Application of latent class analysis in the identification of high-risk female adults population of gynecological diseases
YIN Shi-qi,YAN Xiang-yu,ZHAO Man-yu,SHEN Li-qin,ZHOU Han-wen. Application of latent class analysis in the identification of high-risk female adults population of gynecological diseases[J]. Modern Preventive Medicine, 2020, 0(10): 1798-1802
Authors:YIN Shi-qi  YAN Xiang-yu  ZHAO Man-yu  SHEN Li-qin  ZHOU Han-wen
Affiliation:*West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
Abstract:Objective The study aimed to preliminarily establish latent class of gynecological diseases among female adults,and to explore the differences in characteristics and risk of gynecological diseases of females in each category. Methods A two-stage survey with an anonymous self-administered questionnaire was conducted to investigate female adults aged 18-60 in the urban of Chengdu. A total of 364 valid questionnaires were collected. Latent class analysis(LCA) was used to classify the characteristics of the objects. Results The model fitted well with 2 latent classes. Female adults could be divided into low-risk class and high-risk class according to the difference of gynecological diseases prevalence in the two classes(14.1%vs 45.1%, OR= 4.987, P <0.05). Compared with females in low-risk class, high-risk class had more married non-student females who were also older with lower education, fewer non-individual life experiences, lower levels of sexual and reproductive health knowledge, more sexual behaviors experiences, and more conservative sexual attitudes(P <0.05).Conclusion Using the latent class model constructed, high-risk groups of gynecological diseases can be identified, which can contribute to formulate targeted interventions to improve female reproductive health and reduce the prevalence of gynecological diseases in high-risk groups.
Keywords:Female adults  Gynecological diseases  Risk of disease  Latent class analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《现代预防医学》浏览原始摘要信息
点击此处可从《现代预防医学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号