首页 | 本学科首页   官方微博 | 高级检索  
     


Toll-like receptors in bony fish: from genomics to function
Authors:Palti Yniv
Affiliation:United States Department of Agriculture, Agriculture Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
Abstract:Receptors that recognize conserved pathogen molecules are the first line of cellular innate immunity defense. Toll-like receptors (TLRs) are the best understood of the innate immune receptors that detect infections in mammals. Key features of the fish TLRs and the factors involved in their signaling cascade have high structural similarity to the mammalian TLR system. However, the fish TLRs also exhibit very distinct features and large diversity which is likely derived from their diverse evolutionary history and the distinct environments that they occupy. Six non-mammalian TLRs were identified in fish. TLR14 shares sequence and structural similarity with TLR1 and 2, and the other five (TLR19, 20, 21, 22 and 23) form a cluster of novel TLRs. TLR4 was lost from the genomes of most fishes, and the TLR4 genes found in zebrafish do not recognize the mammalian agonist LPS and are likely paralogous and not orthologous to mammalian TLR4 genes. TLR6 and 10 are also absent from all fish genomes sequenced to date. Of the at least 16 TLR types identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S and TLR22. The common carp TLR2 was shown to recognize the synthetic triacylated lipopeptide Pam3CSK4 and lipopeptides from gram positive bacteria. The membrane-bound TLR5 (TLR5M) signaling in response to flagellin in rainbow trout is amplified through interaction with the soluble form (TLR5S) in a positive loop feedback. In Fugu, TLR3 is localized to the endoplasmic reticulum (ER) and recognizes relatively short dsRNA, while TLR22 has a surveillance function like the human cell-surface TLR3. Genome and gene duplications have been major contributors to the teleost's rich evolutionary history and genomic diversity. Duplicate or multi-copy TLR genes were identified for TLR3 and 7 in common carp, TLR4b, 5, 8 and 20 in zebrafish, TLR8a in rainbow trout and TLR22 in rainbow trout and Atlantic salmon. The main task for current and near-future fish TLRs research is to develop specificity assays to identify the ligands of all fish TLRs, which will advance comparative immunology research and will contribute to our understanding of disease resistance mechanisms in fish and the development of new adjuvants and/or more effective vaccines and therapeutics.
Keywords:CD14, cluster of differentiation 14   ER, endoplasmic reticulum   IL, interleukin   IL1R, interleukin-1 receptor   IRAK, IL1R-associated kinase   IRF, interferon regulatory factor   LBP, LPS-binding protein   LPS, lipopolysaccharide   LRR, leucine-rich repeats   MD-2, myeloid differentiation protein-2   MyD88, myeloid differentiation primary response gene/protein 88   NF-kB, nuclear factor kB   PAMP, pathogen associated molecular pattern   PRR, pattern recognition receptor   TICAM, TIR-containing adaptor molecule   TIR, Toll/interleukin-1 receptor resistance domain   TLR, Toll-like receptor   TRAF6, tumor necrosis factor receptor-associated factor 6   TRIF, TIR domain-containing adaptor inducing interferon
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号