首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mercury (Hg) decreases voltage-gated calcium channel currents in rat DRG and Aplysia neurons
Authors:M Pekel  B Platt  D Büsselberg  
Abstract:Inorganic mercury (Hg2+) reduced voltage-gated calcium channel currents irreversibility in two different preparations. In cultured rat dorsal root ganglion (DRG) neurons, studied with the whole cell patch clamp technique, a rapid concentration-dependent decrease in the L/N-type currents to a steady state was observed with an IC50 of 1.1 μM and a Hill coefficient of 1.3 T-currents were blocked with Hg2+ in the same concentration range (0.5–2 μM). With increasing Hg2+ concentrations a slow membrane current was additionally activated most obviously at concentrations over 2 μM Hg2+. This current was irreversible and might be due to the opening of other (non-specific) ion channels by Hg2+. The current-voltage (I–V) relation of DRG neurons shifted to more positive values, suggesting a binding of Hg2+ to the channel protein and/or modifying its gating properties. In neurons of the abdominal ganglion of Aplysia californica, studied with the two electrode voltage clamp technique, a continous decrease of calcium channel currents was seen even with the lowest used concentration of Hg2+ (5 μM). A steady state was not reached and the effect was irreversible without any change on resting membrane currents, even with high concentrations (up to 50 μM). No shift of the I–V relation of the calcium channel currents was observed. Effects on voltage-activated calcium channel currents with Hg2+ concentrations such low have not been reported before. We conclude that neurotoxic effects of inorganic mercury could be partially due to the irreversible blockade of voltage-activated calcium channels.
Keywords:Mercury  Rat dorsal root ganglion (DRG) neuron  Aplysia neuron  Calcium channel current
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号