首页 | 本学科首页   官方微博 | 高级检索  
     


Glial cells of the oligodendrocyte lineage express proton-activated Na+ channels
Authors:H Sontheimer  M Perouansky  D Hoppe  H D Lux  R Grantyn  H Kettenmann
Affiliation:Department of Neurobiology, University of Heidelberg, Federal Republic of Germany.
Abstract:Neurons and oligodendrocytes, but not type I astrocytes and Schwann cells, generate large Na+ currents in response to a step increase of [H+]. Proton-activated Na+ channels are the first cationic channels expressed in neuronal precursor cells from the mammalian brain. Glial precursor cells cultured from mouse brain are also capable of generating Na+ currents in response to step acidification (INa(H]. With further development along the oligodendrocyte lineage, this property is retained, whereas voltage-activated Na+ and K+ currents disappear. Comparing INa(H) of oligodendrocytes with INa(H) of their precursor cells did not reveal a difference in current amplitude, suggesting a higher density of INa(H) channels on the (smaller) precursor cells. The properties of INa(H) in glial precursor cells and oligodendrocytes are similar to those of neurons, with respect to activation conditions, time course, and the effect of extracellular Ca2+ concentrations. The results are consistent with previous observations which showed that oligodendrocytes partially preserve their chemically activated, but completely lose their voltage-activated, ion channels.
Keywords:sodium channel  pH  differentiation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号