首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region
Authors:Noga Brian R  Kriellaars Dean J  Brownstone Robert M  Jordan Larry M
Institution:The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA. bnoga@miami.edu
Abstract:The synaptic pathways of mesencephalic locomotor region (MLR)-evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) recorded from lumbar motoneurons of unanesthetized decerebrate cats during fictive locomotion were analyzed prior to, during, and after cold block of the medial reticular formation (MedRF) or the low thoracic ventral funiculus (VF). As others have shown, electrical stimulation of the MLR typically evoked short-latency excitatory or mixed excitatory/inhibitory PSPs in flexor and extensor motoneurons. The bulbospinal conduction velocities averaged approximately 88 m/s (range: 62-145 m/s) and segmental latencies for EPSPs ranged from 1.2 to 10.9 ms. The histogram of segmental latencies showed three peaks, suggesting di-, tri-, and polysynaptic linkages. Segmental latencies for IPSPs suggested trisynaptic or polysynaptic transmission. Most EPSPs (69/77) were significantly larger during the depolarized phase of the intracellular locomotor drive potential (LDP), and most IPSPs (35/46) were larger during the corresponding hyperpolarized phase. Bilateral cooling of the MedRF reversibly abolished locomotion of both hindlimbs as measured from the electroneurogram (ENG) activity of muscle nerves and simultaneously abolished or diminished the motoneuron PSPs and LDPs. Unilateral cooling of the VF blocked locomotion ipsilaterally and diminished it contralaterally with concomitant loss or decrease the motoneuron PSPs and LDPs. Relative to the side of motoneuron recording, cooling of the ipsilateral VF sometimes uncovered longer-latency EPSPs, whereas cooling of the contralateral VF abolished longer-latency EPSPs. It is concluded that MLR stimulation activates a pathway that relays in the MedRF and descends bilaterally in the VF to contact spinal interneurons that project to motoneurons. Local segmental pathways that activate or inhibit motoneurons during MLR-evoked fictive locomotion appear to be both ipsilateral and contralateral.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号