首页 | 本学科首页   官方微博 | 高级检索  
检索        


Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation: a lung ultrasound observational study
Authors:Fabiola Prior Caltabeloti  Antoine Monsel  Charlotte Arbelot  Hélène Brisson  Qin Lu  Wen-Jie Gu  Guang-Ju Zhou  José O C Auler  Jr  Jean-Jacques Rouby
Abstract:

Introduction

The study was designed to assess the impact of fluid loading on lung aeration, oxygenation and hemodynamics in patients with septic shock and acute respiratory distress syndrome (ARDS).

Methods

During a 1-year period, a prospective observational study was performed in 32 patients with septic shock and ARDS. Cardiorespiratory parameters were measured using Swan Ganz (n = 29) or PiCCO catheters (n = 3). Lung aeration and regional pulmonary blood flows were measured using bedside transthoracic ultrasound. Measurements were performed before (T0), at the end of volume expansion (T1) and 40 minutes later (T2), consisting of 1-L of saline over 30 minutes during the first 48 h following onset of septic shock and ARDS.

Results

Lung ultrasound score increased by 23% at T2, from 13 at baseline to 16 (P < 0.001). Cardiac index and cardiac filling pressures increased significantly at T1 (P < 0.001) and returned to control values at T2. The increase in lung ultrasound score was statistically correlated with fluid loading-induced increase in cardiac index and was not associated with increase in pulmonary shunt or regional pulmonary blood flow. At T1, PaO2/FiO2 significantly increased (P < 0.005) from 144 (123 to 198) to 165 (128 to 226) and returned to control values at T2, whereas lung ultrasound score continued to increase.

Conclusions

Early fluid loading transitorily improves hemodynamics and oxygenation and worsens lung aeration. Aeration changes can be detected at the bedside by transthoracic lung ultrasound, which may serve as a safeguard against excessive fluid loading.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号