Integrity of lateral and feedbackward connections in visual processing in children with pervasive developmental disorder |
| |
Authors: | Kemner C Lamme V A F Kovacs I van Engeland H |
| |
Affiliation: | Department of Child and Adolescent Psychiatry, University Medical Center Utrecht & Rudolf Magnus Institute for Neurosciences, Utrecht, The Netherlands. C.Kemner@umcutrecht.nl |
| |
Abstract: | Enhanced visual detail processing in subjects with pervasive developmental disorder (PDD) has been related to impairments in feature integration. The functional integrity of two types of neuronal connections involved in visual feature integration, namely horizontal and feedbackward connections, were tested. Sixteen children with PDD and 17 age- and IQ-matched control children (mean age 13.3 years) were included. In a texture segregation task the difference in ERP response to homogeneous and checkered visual stimuli was determined. Additionally, in a contour integration task subjects had to point out a contour consisting of colinearly aligned Gabor signals in backgrounds increasing in noise. Children with PDD showed a normal performance on the contour integration task, suggesting that neurons in the primary visual cortex of children with PDD can effectively integrate the activity of local detectors that process different aspects of the same object information by making use of long-range lateral connections. The amplitude of ERP activity related to texture segregation was also not different between the PDD and control groups, indicating functional visual feedback mechanisms between V1 and higher order areas in subjects with PDD. However, a difference in latency of texture-segmentation related activity between the groups was noted. This effect did not reach significance, which could be due to the small N of the study. Therefore, the data need replication in a study with larger samples before more definitive conclusions can be drawn. |
| |
Keywords: | Pervasive developmental disorders Autistic disorder Event-related potentials Visual integration |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|