首页 | 本学科首页   官方微博 | 高级检索  
     


Kv3 potassium channels control the duration of different arousal states by distinct stochastic and clock-like mechanisms
Authors:Joho Rolf H  Marks Gerald A  Espinosa Felipe
Affiliation:Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Rolf.Joho@utsouthwestern.edu
Abstract:Sleep-wake behavior is tightly controlled in many animal species, suggesting genetically encoded, homeostatic control mechanisms that determine arousal-state dynamics. We reported that two voltage-gated potassium channels, Kv3.1 and Kv3.3, control sleep in wild-type and Kv3-mutant mice. Compared with wild-type (WT), homozygous double mutants (DKO) that lack these channels sleep 40% less in the light and 22% less in the dark. To understand how the lack of these channels affects sleep, we analysed arousal-state changes during the light period where the differences are greatest between WT and DKO. We determined the kinetic complexity of each arousal state from the episode durations of wakefulness, slow-wave sleep and rapid eye movement sleep (REMS). Based on the number of exponential components in episode-duration histograms, WT and DKO mice have several kinetically distinct states of wakefulness, and these states are longer in duration in DKO. For slow-wave sleep, WT mice have a single slow-wave sleep (SWS) state in contrast to DKO mice, which show two distinct SWS states, one that is 60% shorter than that in WT and a second that is similar in duration. Both WT and DKO mice have two kinetically distinct REMS states. DKO mice show an 84% reduction in the frequency of short REMS episodes (<45 s) without any change in the occurrence of long REMS episodes (>60 s). In contrast to the stochastic control of episode durations of wakefulness and SWS, the durations of both REMS states are normally distributed, indicating that the underlying control processes are fundamentally different.
Keywords:knockout mice    mutation    short and long REM sleep    sleep architecture
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号