TNF-alpha rapidly antagonizes the beta-adrenergic responses of the chloride current in guinea-pig ventricular myocytes. |
| |
Authors: | Kenji Iino Hiroyuki Watanabe Takashi Saito Satoshi Kibira Toshihiko Iijima Mamoru Miura |
| |
Affiliation: | The 2nd Department of Internal Medicine, Akita University School of Medicine, Japan. |
| |
Abstract: | The purpose of this study was to test the hypothesis that tumor necrosis factor-alpha (TNF-alpha) rapidly antagonizes the beta-adrenergic responses of the chloride current and to clarify the intracellular mechanisms responsible for the anti-adrenergic action. The whole-cell patch-clamp technique was used to monitor the anti-adrenergic effects of TNF-alpha on the cAMP-dependent chloride current (I(Cl)) recorded from isolated guinea-pig ventricular myocytes. Ramp pulses (+/-120 mV; dv/dt = +/-0.4 V/s) were applied from the holding potential of -40 mV. TNF-alpha rapidly (<15 min) inhibited the isoproterenol (Iso, 0.1 micromol/L)-induced I(Cl) in a concentration-dependent manner (30-1,000 U/ml, IC (50) = 144 U/ml, n=30). The inhibitory action of TNF-alpha was also observed when I(Cl) had been previously stimulated by 1 micromol/L forskolin (n=5). Prior exposure of myocytes to 5 microg/ml pertussis toxin (PTX) hardly affected the anti-adrenergic action of TNF-alpha (n=4). However, when I(Cl) was induced by both 8-bromo-cAMP (100 micromol/L) and isobutylmethylxanthine (0.1 mmol/L), TNF-alpha (1,000 U/ml) failed to decrease I(Cl) amplitude (n=5). Prior exposure of myocytes to 5 mg/ml pertussis toxin (PTX) hardly affected the anti-adrenergic action of TNF-alpha (n=4). Furthermore, despite of the presence of nitro-L-arginine methyl ester (0.1 mmol/L), a nitric oxide synthase (NOS) inhibitor, TNF-alpha reversed the Iso-induced increase in I(Cl) (n=5). These results suggest that TNF-alpha rapidly antagonizes the beta-adrenergic responses of I(Cl) by reducing cAMP concentration. This anti-adrenergic action is mediated by neither the PTX-sensitive G proteins regulatory pathway nor constitutive NOS activation. |
| |
Keywords: | |
|
|