首页 | 本学科首页   官方微博 | 高级检索  
     


ATP-sensitive potassium channels in freshly dissociated adult rat striatal neurons: activation by metabolic inhibitors and the dopaminergic receptor agonist quinpirole
Authors:Xiao-Dong Sun  Esther W. Lee  Erik H. Wong  Kai S. Lee
Affiliation:Department of Pharmacology, Pharmacia and Upjohn, Kalamazoo, MI 49007, USA.
Abstract:The characteristics of adenosine 5'-triphosphate (ATP)-sensitive K+ channels in acutely isolated striatal neurons from adult rats were examined. Neurons had a resting membrane potential of -53.9+/-1.2 mV (n=66), with evoked or spontaneous action potentials firing at 10+/-0.7 Hz, and large inwards and outwards whole-cell currents. In cell-attached patches with a high [K+] in the pipette, a voltage-independent, ATP-insensitive 16.5+/-1.5 pS channel was observed in 375 out of 452 cells. Bath application of Na+-azide (0.5-2 mM) to 108 neurons revealed another 145.7+/-3.5 pS (LKATP) channel in 65 neurons; this channel was blocked by tolbutamide. The LKATP channel exhibited a high open probability (Po, 0.8+/-0.05) at 0 mV pipette potential. Varying the pipette [K+] shifted the reversal potential of LKATP, showing the channel's K+ selectivity. Cytoplasmic ATP (ATPi) reversibly inhibited LKATP, with an inhibitory constant (Ki) of 0.12 mM. LKATP was sensitive to intracellular Ca2+ but insensitive to iberiotoxin. In 25% of cell-attached patches, the presence of quinpirole in the pipette opened a third type of channel (90.6+/-1.7 pS, termed D2KATP). Sulpiride, a dopamine D2-receptor antagonist, inhibited D2KATP. ATPi reversibly inhibited D2KATP, with a Ki of 0.212 mM. The Na+-azide- or quinpirole-induced current caused a tolbutamide-sensitive membrane hyperpolarization and a marked reduction in action potential frequency. We propose that ATP-sensitive K+ channels play a metabolism-dependent role in striatal neurons.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号