首页 | 本学科首页   官方微博 | 高级检索  
检索        


Laryngeal afferent stimulation enhances Fos immunoreactivity in periaqueductal gray in the cat.
Authors:R Ambalavanar  Y Tanaka  M Damirjian  C L Ludlow
Institution:Voice and Speech Section, NIDCD, NIH, Bethesda, Maryland 20892-1416, USA. ambalava@nidcd.nih.gov
Abstract:The main functions of the larynx are protection of the airways, respiration, and vocalization. Previous studies have suggested a link between the mechanisms controlling vocalization and afferent feedback from the larynx. We inquired whether stimulation of the laryngeal afferents that run in the internal branch of the superior laryngeal nerve (ISLN) activates neurons of the periaqueductal gray (PAG), a midbrain region implicated in vocalization. We counted the number of neurons expressing Fos, the protein product of the immediate early gene c-fos, in the PAG. The counts were done both in experimental cats after electrical stimulation of the ISLN and nonstimulated controls. We also investigated the possible presence of nitric oxide synthase, an enzyme that synthesizes nitric oxide, in PAG neurons that respond to laryngeal afferent stimulation by double labeling for reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase and Fos. Fos expression was significantly greater (P < or = 0.00714) in the lateral and dorsolateral regions of the PAG in the experimental group than in the controls. The Fos-immunoreactive neurons did not contain NADPH-diaphorase, a marker for nitric oxide synthase. Our study suggests that laryngeal afferent stimulation activates neurons in discrete longitudinal columns of the PAG including the regions that have previously been shown to be involved in vocalization, and that these neurons do not contain nitric oxide synthase.
Keywords:vocalization  adductor reflex  immunohistochemistry  superior laryngeal nerve  electrical stimulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号