首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mechanism of phosphatidylinositol 3-kinase-dependent increases in BAC1.2F5 macrophage-like cell density in response to M-CSF: Phosphatidylinositol 3-kinase inhibitors increase the rate of apoptosis rather than inhibit DNA synthesis
Authors:JT Murray  G Craggs  L Wilson  S Kellie
Institution:Yamanouchi Research Institute, Oxford, UK.
Abstract:OBJECTIVE AND DESIGN: To determine the role of phosphatidylinositol 3-kinase (PI 3-kinase) in macrophagecolony stimulating factor (M-CSF)-induced macrophage proliferation. MATERIALS: The M-CSF-dependent BAC1.2F5 murine macrophage cell line was used. METHODS: PI 3-kinase activity, Protein kinase B activation, increased cell numbers, induction of DNA synthesis and apoptosis were measured in response to serum, M-CSF and PI 3-kinase inhibitors. RESULTS: Wortmannin or LY294002 inhibited M-CSF-stimulated increases in BAC1.2F5 cell density. Further analysis showed that inhibition of PI 3-kinase had an insignificant effect on DNA synthesis, but significantly induced apoptosis. Other co-factors in serum mediated cell survival and prevented programmed cell death, in a PI 3-kinase-dependent manner. Stimulation of BAC1.2F5 macrophages with M-CSF induced phosphorylation of PKB/Akt as detected by activation-specific antibodies. Activation of PKB/Akt correlated with PI 3-kinase activation, suggesting that the protection from apoptosis in these cells is mediated by PKB/Akt. CONCLUSIONS: These results indicate that the lack of increase in cell numbers when cells are stimulated with M-CSF in the presence of PI 3-kinase inhibitors is due to a preferential PI 3-kinase requirement for protection against apoptosis, rather than a requirement for PI 3-kinase activation during the proliferation signal.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号