Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. |
| |
Authors: | A C Ngai M A Jolley R D'Ambrosio J R Meno H R Winn |
| |
Affiliation: | Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98104, USA. ngai@u.washington.edu |
| |
Abstract: | Contrary to the concept of neuronal-vascular coupling, cortical evoked potentials do not always correlate with blood flow responses during somatosensory stimulation at changing stimulus rates. The goal of this study is to clarify the effects of stimulus frequency on the relationship between somatosensory evoked potentials (SEPs) and cerebral blood flow. In rats anesthetized with alpha-chloralose, we measured SEPs by signal-averaging field potentials recorded with an electrode placed on dura overlying the hindlimb somatosensory cortex. Regional blood flow was simultaneously assessed in the same region with a laser-Doppler flow (LDF) probe. The contralateral sciatic nerve was stimulated with 0.1 A pulses at the frequencies of 1, 2, 5, 10 and 20 Hz. SEPs (both P1 and N1 components) declined with increasing frequency regardless whether stimulus duration (20 s) or number (100) were kept constant, suggesting that frequency is an important determinant of neuronal activity. In contrast, LDF responses increased to a maximum at 5 Hz, and do not correlate with SEPs. Because CBF should reflect integrated neuronal activity, we computed the sum of SEPS (summation operatorSEP = SEP x stimulus frequency) as an index of total neuronal activity at each frequency. Summation operatorSEP indeed correlates positively (P<0.001) with LDF responses. Thus, during somatosensory stimulation at various frequencies, cerebral blood flow is coupled to integrated neuronal activity but not to averaged evoked potentials. |
| |
Keywords: | |
|
|