首页 | 本学科首页   官方微博 | 高级检索  
检索        


Improved lung delivery from a passive dry powder inhaler using an Engineered PulmoSphere powder
Authors:Duddu Sarma P  Sisk Steven A  Walter Yulia H  Tarara Thomas E  Trimble Kevin R  Clark Andrew R  Eldon Michael A  Elton Rebecca C  Pickford Matthew  Hirst Peter H  Newman Stephen P  Weers Jeffry G
Institution:(1) Inhale Therapeutic Systems Inc, San Carlos, California, 94070;(2) Pharmaceutical Profiles Ltd, Nottingham, United Kingdom
Abstract:Purpose. To assess the pulmonary deposition and pharmacokinetics of an engineered PulmoSphere® powder relative to standard micronized drug when delivered from passive dry powder inhalers (DPIs). Methods. Budesonide PulmoSphere (PSbud) powder was manufactured using an emulsion-based spray-drying process. Eight healthy subjects completed 3 treatments in crossover fashion: 370 mgrg budesonide PulmoSphere inhaled from Eclipse® DPI at target PIF of 25 L·min-1 (PSbud25), and 50 L·min-1 (PSbud50), and 800 mgrg of pelletized budesonide from Pulmicort® Turbuhaler® at 60 L·min-1(THbud60). PSbud powder was radiolabeled with 99mTc and lung deposition determined scintigraphically. Plasma budesonide concentrations were measured for 12 h after inhalation. Results. Pulmonary deposition (mean ± sd) of PSbud was 57 ± 7% and 58 ± 8% of the nominal dose at 25 and 50 L·min-1, respectively. Mean peak plasma budesonide levels were 4.7 (PSbud25), 4.0 (PSbud50), and 2.2 ng·ml-1 (THbud60). Median tmax was 5 min after both PSbud inhalations compared to 20 min for Turbuhaler (P < 0.05). Mean AUCs were comparable after all inhalations, 5.1 (PSbud25), 5.9 (PSbud50), and 6.0 (THbud60) ng·h·ml-1. The engineered PSbud powder delivered at both flow rates from the Eclipse® DPI was twice as efficiently deposited as pelletized budesonide delivered at 60 L·min-1 from the Turbuhaler. Intersubject variability was also dramatically decreased for PSbud relative to THbud. Conclusion. Delivery of an engineered PulmoSphere formulation is more efficient and reproducible than delivery of micronized drug from passive DPIs.
Keywords:pulmonary drug delivery  dry powder inhaler  particle engineering  spray-drying  pharmacoscintigraphy  Eclipse®  
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号