首页 | 本学科首页   官方微博 | 高级检索  
检索        

Hyperpolarization-activated Cyclic nucleotide-gated Channel and Cardiac Biological Pacemaker:Part Ⅰ
作者姓名:Daniel  C.Sigg
作者单位:Cardiac Rhythm
摘    要:Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in the heart modulate cardiac automaticity via the hyperpolarization-activated cation current ( named Ⅰf, Ⅰh, or Ⅰq). Recent studies have unveiled the molecular identity of HCN (HCN1-4) channels. HCN isoforms are unevenly expressed in the heart, even in the sinoatrial node. Features of HCN currents have been characterized in cardiac and other types of cells or in cell lines transfected with the HCN isoforms. The factors modulating Ih and the physiological significance of HCN channels in the heart have been extensively investigated in recent years. The hypothesis for transplanting and/or creating biological pacemakers to replace diseased sinoatrial and/or atrioventricular nodes has been postulated and tested in animal models. Local overexpression of HCN2 channels in the left atrium or in the left conductive bundle branch of the left ventricle via gene delivery induced significant Ⅰh and escape rhythms during vagal stimulation in canines. In addition, implantation of human mesenchymal stem cells with overexpression of HCN2 channels to the canine left ventricular wall was associated with formation of spontaneous escape rhythms of left-sided origin during vagal-stimulation-induced sinus arrest. This preliminary data suggest that the use of HCN channels may hold great promise in,the development of biological pacemakers.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号