Abstract: | It is well known that radiation therapy can be successfully used to cure or control some types of human tumors, while consistently failing in others. This has been ascribed to several factors including differences in the intrinsic sensitivity of the tumor cells and in their ability to recover from radiation damage. In this study, human tumor cells from an osteogenic sarcoma, a glioblastoma, and two medulloblastomas, as well as cells from human skin, were established in tissue culture, and the in vitrox x-ray survival and DNA repair parameters determined. No significant differences in either clonogenic survival or DNA strand rejoining ability could be detected among these human tumors or skin cells, despite the wide variability in their radiocurability in vivo. In addition, skin cell strains derived from patients exhibiting markedly sensitive or resistant skin reactions during fractionated radiotherapy showed no differences in survival characteristics from normal controls. It is therefore suggested that the wide range of radiocurabilities seen among various human tumors cannot be explained on the basis of inherent cellular factors responsible for the survival of tumor cells after x-irradiation. |