首页 | 本学科首页   官方微博 | 高级检索  
     


Validation of pharmacogenetic algorithms and warfarin dosing table in Egyptian patients
Authors:Naglaa Samir Bazan  Nirmeen Ahmed Sabry  Amal Rizk  Sherif Mokhtar  Osama Badary
Affiliation:1. Critical Care Medicine Department, Cairo University Hospitals, Cairo, Egypt
2. Faculty of Pharmacy, Clinical Pharmacy Department, Cairo University, Cairo, Egypt
3. Faculty of Medicine, Critical Care Medicine Department, Cairo University, Cairo, Egypt
4. Faculty of Medicine, Critical Care Medicine Department, Cairo University, Cairo, Egypt
5. Faculty of Pharmacy, Clinical Pharmacy Department, Ain Shams University, Cairo, Egypt
Abstract:Background Warfarin remains a difficult drug to use due to the large variability in dose response. Clear understanding of the accuracy of warfarin pharmacogenetic dosing methods might lead to appropriate control of anticoagulation. Objective This study aims to evaluate the accuracy of warfarin dosing table and two pharmacogenetic algorithms, namely the algorithms of Gage et al. (Clin Pharmacol Ther 84:326?C331, 2008), and the International Warfarin Pharmacogenetics Consortium algorithm (IWPC) in a real Egyptian clinical setting. Additionally, three non-pharmacogenetic dosing methods (the Gage, IWPC clinical algorithms and the empiric 5?mg/day dosing) were evaluated. Setting Sixty-three Egyptian patients on a stable therapeutic warfarin dose were included. Patients were recruited from the outpatient clinic of the critical care medicine department. Methods CYP2C9 and VKORC1 polymorphisms were genotyped by real time PCR system. Predicted doses by all dosing methods were calculated and compared with the actual therapeutic warfarin doses. Results The Gage algorithm (adjusted R2?=?0.421, and mean absolute error (MAE)?=?3.3), and IWPC algorithm (adjusted R2?=?0.419, MAE?=?3.2) produced better accuracy than did the warfarin dosing table (adjusted R2?=?0.246, MAE?=?3.5), the two clinical algorithms (R2?=?0.24, MAE?=?3.7) and the fixed dose approach (MAE?=?3.9). However, all dosing models produced comparable clinical accuracy with respect to proportion of patients within 1?mg/day of actual dose (ideal dose). Non-pharmacogenetic methods severely over-predicted dose (defined as ??2?mg/day more than actual dose) compared to the three pharmacogenetic models. In comparison to non-pharmacogenetic methods, the three pharmacogenetic models performed better regarding the low dose group in terms of percentage of patients within ideal dose. In the high dose group, none of the dosing models predicted warfarin doses within ideal dose. Conclusion Our study showed that genotype-based dosing improved prediction of warfarin therapeutic dose beyond that available with the fixed-dose approach or the clinical algorithms, especially in the low-dose group. However, the two pharmacogenetic algorithms were the most accurate.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号