首页 | 本学科首页   官方微博 | 高级检索  
     


Possible roles of 5-HT in vein graft failure due to intimal hyperplasia 5-HT, nitric oxide and vein graft
Authors:Akio Kodama  Takeo Itoh  Kimihiro Komori
Affiliation:1. Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
2. Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
Abstract:For vascular occlusive disease, an autologous vein graft is the most suitable conduit for arterial reconstruction. Intimal hyperplasia, resulting from the migration and proliferation of vascular smooth muscle cells, is a major obstacle to patency after vein grafting. The degree to which the function of nitric oxide (NO) in the vein graft is preserved has been reported to be associated with the magnitude of intimal hyperplasia. Serotonin (5-HT) is released from platelets in the vascular system and plays physiological roles in controlling the vascular tone. The subtype receptors contributing to the 5-HT-induced mechanical responses vary by vessel type (artery and vein) and among species (dogs, rabbits, rats, and so on). Recent studies have demonstrated that 5-HT induces vasoconstriction through the activation of 5-HT2A receptors in smooth muscle cells or vasodilatation through the activation of endothelial 5-HT1B receptors in arteries from various animals. However, the effects of 5-HT have not been clarified in grafted veins. We herein demonstrate the responses to 5-HT in un-operated veins and then autogenous vein grafts. Next, we describe the effects of chronic in vivo administration of Rho-kinase inhibitors and 5-HT2A receptor antagonists, both of which reduce the 5-HT-induced contraction and intimal hyperplasia in vein grafts. Further studies targeting 5-HT are required to evaluate its possible benefits for autologous vein grafts with respect to vasospasm, function, and patency.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号