首页 | 本学科首页   官方微博 | 高级检索  
     


Hexagonal organization of Moloney murine leukemia virus capsid proteins
Authors:Mayo Keith  McDermott Jason  Barklis Eric
Affiliation:Vollum Institute and Department of Microbiology, Oregon Health Sciences University, Portland 97201-3098, USA.
Abstract:To help elucidate the mechanisms by which retrovirus structural proteins associate to form virus particles, we have examined membrane-bound assemblies of Moloney murine leukemia virus (M-MuLV) capsid (CA) proteins. Electron microscopy and image reconstruction techniques showed that CA dimers appear to function as organizational subunits of the cage-like, membrane-bound protein arrays. However, new three-dimensional (3D) data also were consistent with hexagonal (p6) assembly models. The p6 3D reconstructions of membrane-bound M-MuLV CA proteins gave unit cells of a = b = 80.3 A, c = 110 A, gamma = 120 degrees, in which six dimer units formed a cage lattice. Neighbor cage hole-to-hole distances were 45 A, while distances between hexagonal cage holes corresponded to unit cell lengths (80.3 A). The hexagonal model predicts two types of cage holes (trimer and hexamer holes), uses symmetric head-to-head dimer building blocks, and permits the introduction of lattice curvature by conversion of hexamer to pentamer units. The M-MuLV CA lattice is similar to those formed in helical tubes by HIV CA in that hexamer units surround cage holes of 25-30 A, but differs in that M-MuLV hexamer units appear to be CA dimers, whereas HIV CA units appear to be monomers. These results suggest that while general assembly principles apply to different retroviruses, clear assembly distinctions exist between these virus types.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号