首页 | 本学科首页   官方微博 | 高级检索  
检索        


Excitation functions of (alpha,xn) reactions on (nat)Rb and (nat)Sr from threshold up to 26 MeV: possibility of production of (87)Y, (88)Y and (89)Zr.
Authors:S A Kandil  I Spahn  B Scholten  Z A Saleh  S M M Saad  H H Coenen  S M Qaim
Institution:Institut für Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; Cyclotron Facility, Nuclear Research Centre, Atomic Energy Authority, Cairo 13759, Egypt.
Abstract:Excitation functions were measured by the stacked-foil technique for (nat)Rb(alpha,xn)(87m,87m+g,88)Y and (nat)Sr(alpha,xn)(86,88,89)Zr reactions from their respective thresholds up to 26 MeV. The samples for irradiation were prepared by sedimentation and pellet pressing techniques. The measured data were compared with those available in the literature. From the excitation functions, integral yields of the products were calculated. The suitable energy ranges for the production of (87)Y and (88)Y via (nat)Rb(alpha,xn) processes and of (89)Zr via the (nat)Sr(alpha,xn) process are E(alpha)=26-->20 MeV, E(alpha)=26-->5 MeV and E(alpha)=20-->8.5 MeV, respectively. The respective yields amount to 8.2, 0.08 and 0.9 MBq/microA h. Production of (88)Y is feasible if a waiting time of about 2 months is allowed to let the impurities decay out. Also, (87)Y can be produced with a relatively low impurity of (88)Y. The yields of both (88)Y and (87)Y via the present routes are, however, appreciably lower than those via the (nat)Sr(p,xn) processes. There is a possibility to produce (89)Zr via the alpha-particle irradiation of (nat)Sr. The yield is rather low but would be considerably increased if enriched (86)Sr would be used as target material. The radionuclidic impurity levels in all the three products are discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号