首页 | 本学科首页   官方微博 | 高级检索  
检索        


Electrophysiology of cell volume regulation in proximal tubules of the mouse kidney
Authors:Harald Völkl  Florian Lang
Institution:(1) Institut für Physiologie der Universität Innsbruck, Fritz-Pregl-Strasse 3, A-6010 Innsbruck, Austria
Abstract:The present study has been designed to test for the influence of cell swelling on the potential difference and conductive properties of the basolateral cell membrane in isolated perfused proximal tubules. During control conditions the potential difference across the basolateral cell membrane (PDbl) is –65±1 mV (n=74). Decrease of peritubular osmolarity by 80 mosmol/l depolarizes the basolateral cell membrane by +7.8±0.5 mV (n=42). An increase of bath potassium concentration from 5 to 20 mmol/l depolarizes the basolateral cell membrane by +25±1 mV (n=11), an increase of bath bicarbonate concentration from 20 to 60 mmol/l hyperpolarizes the basolateral cell membrane by –3.2±0.5 mV (n=13). A decrease of bath chloride concentration from 79.6 to 27 mmol/l hyperpolarizes the basolateral cell membrane by –1.8±0.7 mV (n=6). During reduced bath osmolarity, the influence of altered bath potassium concentration on PDbl is decreased (Delta PDbl=+16±2 mV,n=11), the influence of altered bicarbonate concentration on PDbl is increased (Delta PDbl=–6.0±0.8 mV,n=13), and the influence of altered bath chloride concentration on PDbl is unaffected (Delta PDbl=–1.8±0.6 mV,n=6). Barium depolarizes the basolateral cell membrane to –28±2 mV (n=16). In the presence of 1 mmol/l barium, decrease of peritubular osmolarity by 80 mosmol/l leads to a transient hyperpolarization of the basolateral cell membrane by –5.9±0.5 mV (n=16). This transient hyperpolarization is blunted in the absence of extracellular bicarbonate. In conclusion, cell swelling depolarizes straight proximal tubule cells and increases bicarbonate selectivity of the basolateral cell membrane at the expense of potassium selectivity. The data reflect either incrases of bicarbonate conductance or decrease of potassium conductance during exposure of proximal tubule cells to hypotonic media.Parts of this work were presented at the 18th Congress of the Gesellschaft für Nephrologie, Frankfurt/M. 1986 and at the 8th International Symposium on Biochemical Aspects of Kidney Function, Dubrovnik 1986
Keywords:Cell volume regulation  Proximal tubule  K+-conductance  Bicarbonate conductance  Chloride conductance  Cell membrane potential  Microelectrodes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号