首页 | 本学科首页   官方微博 | 高级检索  
     


A switch to feeding on cycads generates parallel accelerated evolution of toxin tolerance in two clades of Eumaeus caterpillars (Lepidoptera: Lycaenidae)
Authors:Robert K. Robbins  Qian Cong  Jing Zhang  Jinhui Shen  Julia Quer Riera  Debra Murray  Robert C. Busby  Christophe Faynel  Winnie Hallwachs  Daniel H. Janzen  Nick V. Grishin
Abstract:We assembled a complete reference genome of Eumaeus atala, an aposematic cycad-eating hairstreak butterfly that suffered near extinction in the United States in the last century. Based on an analysis of genomic sequences of Eumaeus and 19 representative genera, the closest relatives of Eumaeus are Theorema and Mithras. We report natural history information for Eumaeus, Theorema, and Mithras. Using genomic sequences for each species of Eumaeus, Theorema, and Mithras (and three outgroups), we trace the evolution of cycad feeding, coloration, gregarious behavior, and other traits. The switch to feeding on cycads and to conspicuous coloration was accompanied by little genomic change. Soon after its origin, Eumaeus split into two fast evolving lineages, instead of forming a clump of close relatives in the phylogenetic tree. Significant overlap of the fast evolving proteins in both clades indicates parallel evolution. The functions of the fast evolving proteins suggest that the caterpillars developed tolerance to cycad toxins with a range of mechanisms including autophagy of damaged cells, removal of cell debris by macrophages, and more active cell proliferation.

The genus Eumaeus Hübner (Lycaenidae, Theclinae) arguably contains the most aposematically colored caterpillars and butterflies among the ∼4,000 Lycaenidae in the world (16). The brilliant red and gold gregarious caterpillars (Fig. 1) sequester cycasin from the leaves of their cycad food plants (Zamiaceae), which deters predators (39). Other secondary metabolites in cycads (e.g., 1011) may also deter predators. Eumaeus adults have a bright orange-red abdomen and an orange-red hindwing spot (except for one species) (Fig. 2). Blue and green iridescent markings are especially conspicuous on a black ground color. Eumaeus adults are among the largest lycaenids and have more rounded wings and a slower, more gliding flight than most Theclinae (1). Cycads are among the most primitive extant seed-plants (9), and the “plethora of aposematic attributes suggests a very ancient association between Eumaeus and the cycad host plants” (3).Open in a separate windowFig. 1.Caterpillars and pupae of Theorema eumenia (Top) and Eumaeus godartii (Bottom) in Costa Rica. Clockwise from Upper Left, second or third instar (length, ∼13 mm), fourth (final) instar (∼20 mm), pupa (∼18 mm), pupa (∼24 mm), fourth (final) instar (∼27 mm), second or third instar (∼20 mm). (Images from authors W.H. and D.H.J.).Open in a separate windowFig. 2.Adult wing uppersides and undersides. Eumaeus childrenae (two Upper Left images), E. atala (two Upper Right images), Theorema eumenia (two Lower Left images), and Mithras nautes (two Lower Right images). Scale bar, 1 cm.Eumaeus has been classified as a separate family (1214), a genus in the Riodinidae (1516), or a monotypic subfamily or tribe of the Lycaenidae (1720). Alternatively, others called it a typical member of the Neotropical Lycaenidae (2122). The evolutionary question behind this discordant taxonomic history is whether Eumaeus is a phylogenetically isolated lineage long associated with cycads (3) or an embedded clade in which a recent food plant shift to cycads resulted in the rapid evolution of aposematism. Recent molecular evidence for a limited number of taxa suggested the latter (23). To answer this question definitively, we analyzed genomic sequences of Eumaeus and its relatives.To trace the evolution of cycad feeding, we report the caterpillar food plants of the genera most closely related to Eumaeus and illustrate their immature stages (Fig. 1 and SI Appendix). This natural history information combined with analyses of genome sequences is the foundation for investigating the subsequent evolutionary impact on the Eumaeus genome of the switch to eating cycads.
Keywords:parallel evolution   butterflies   genomics   biodiversity   toxins
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号