首页 | 本学科首页   官方微博 | 高级检索  
     


Binding characteristics of [3H] guanfacine to rat brain α-adrenoceptors: Comparison with [3H]clonidine
Authors:Pieter B.M.W.M. Timmermans  Angelique M.C. Schoop  Pieter A. Van Zwieten
Affiliation:Department of Pharmacy, Division of Pharmacotherapy, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
Abstract:The tritium-labeled α-adrenoceptor agonist and antihypertensive drug guanfacine, N-amidino-2-(2,6-dichlorophenyl)-acetamide (sp. act. 24.2 Cimmole) was employed for a direct identification and characterization of α-adrenoceptors in rat brain membranes. Its usefulness as a radioligand was studied in comparison with [3H]clonidine (sp. act. 26.7 Cimmole). The nonspecific binding of [3H]guanfacine to rat cerebral membranes was considerably more pronounced than that observed for [3H]clonidine. The specific binding of [3H] guanfacine (0.1–20 nM) and [3H]clonidine (0.1–20 nM) as defined as the excess over blanks containing (?)-norepinephrine (10μM) was saturable. Scatchard analyses of these binding data indicated single populations of binding sites for both ligands. KD values of 3.9 ([3H]guanfacine) and 3.7 nM ([3H]clonidine) were calculated. Maximal number of specific binding sites amounted to 220 and 195 fmolemg protein for [3H]guanfacine and [3H]clonidine, respectively. In case unlabeled guanfacine (1 μM) was used to characterize the specific binding of [3H] guanfacine, Kd value and maximal number of binding sites were about twice as high as determined in the presence of excess (?)-norepinephrine. The rate of association of both radioligands was rapid. Binding reached equilibrium by about 10–15 min of incubation. Half-maximal binding was attained at approximately 1–2 min. The rates of dissociation were biphasic. A rapid and a slow component were identified. The specific binding sites of [3H] guanfacine in rat brain possess the general characteristics of α2-adrenoceptors. Selective antagonists of α2-adrenoceptors, like yohimbine and rauwolscine strongly interfered with this binding. However, preferential blocking agents of α1-adrenoceptors, such as prazosin and corynanthine, were weak competitors. The relative potency of agonists and antagonists in displacing [3H]guanfacine was identical to their effectiveness in competing for [3H]clonidine specific binding sites. It is concluded that [3H]guanfacine labels the same α2-adrenoceptor population in rat brain as [3H]clonidine. However, [3H]guanfacine seems not as suitable as [3H]clonidine for routine use in the direct identification of α2-adrenoceptors in view of its relatively high nonspecific binding.
Keywords:Author to whom correspondence should be sent.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号