首页 | 本学科首页   官方微博 | 高级检索  
     


Long-term effect of early discharge on sEPSC and [Ca2+]i in developing neurons
Authors:Wang Jingmin  Jiang Yuwu  Cao Haiyan  Yu Lifang  Bo Tao  Ni Hong  Jiang Qian  Wu Xiru
Affiliation:Department of Pediatrics, Peking University First Hospital, 100034 Beijing, China.
Abstract:To study the long-term changes induced in immature rat cortical neuronal cultures by transient exposure to an Mg(2+)-free treatment, at cultured day 6, cells were assigned into three groups, based on the mediums they were transiently exposed to as follows: control group 1 (CONT1) was exposed to Dulbecco's Modified Eagle's Medium (DMEM), control group 2 was exposed to a physiological solution (PS), and the magnesium-free physiological solution group (MGFPS) was exposed to the same medium as CONT2 except for the removal of magnesium. Following a 3-h exposure, the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSC) were recorded and intracellular calcium concentrations ([Ca2+]i) were measured. Compared to the CONT1 and CONT2 groups, the MGFPS group displayed a significantly greater amplitude (at d6, d7, d9, and d12) and frequency (at d6, d7, and d9) of sEPSC (p<0.05). Also, both the resting and peak intracellular calcium levels were significantly greater in the MGFPS group at days 6, 7, 9, 12 and 17 (p<0.05). The rise time (time from resting level to peak level of intracellular calcium following NMDA application) was significantly shorter in the MGFPS group at culture days 7 and 17 and significantly longer at culture day 12 (p<0.05). Finally, we compared the percentage of cortical neurons expressing neuron-specific enolase (NSE) and found that there were no significant differences in the number of NSE positive neurons among three groups at days 7, 12, and 17. Our results suggests that there are long-term changes in sEPSCs and [Ca2+]i in cultured rat cortical neurons following exposure to Mg2+-free environment without cell loss.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号