BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures |
| |
Authors: | Brenner Robert Chen Qing H Vilaythong Alex Toney Glenn M Noebels Jeffrey L Aldrich Richard W |
| |
Affiliation: | Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA. |
| |
Abstract: | Synaptic inhibition within the hippocampus dentate gyrus serves a 'low-pass filtering' function that protects against hyperexcitability that leads to temporal lobe seizures. Here we demonstrate that calcium-activated potassium (BK) channel accessory beta4 subunits serve as key regulators of intrinsic firing properties that contribute to the low-pass filtering function of dentate granule cells. Notably, a critical beta4 subunit function is to preclude BK channels from contributing to membrane repolarization and thereby broaden action potentials. Longer-duration action potentials secondarily recruit SK channels, leading to greater spike frequency adaptation and reduced firing rates. In contrast, granule cells from beta4 knockout mice show a gain-of-function for BK channels that sharpens action potentials and supports higher firing rates. Consistent with breakdown of the dentate filter, beta4 knockouts show distinctive seizures emanating from the temporal cortex, demonstrating a unique nonsynaptic mechanism for gate control of hippocampal synchronization leading to temporal lobe epilepsy. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|