首页 | 本学科首页   官方微博 | 高级检索  
检索        


Quantitative diffusion imaging with steady-state free precession.
Authors:Sean C L Deoni  Terry M Peters  Brian K Rutt
Institution:Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada.
Abstract:The addition of a single, unbalanced diffusion gradient to the steady-state free precession (SSFP) imaging sequence sensitizes the resulting signal to free diffusion. Unfortunately, the confounding influence of both longitudinal (T1) and transverse (T2) relaxation on the diffusion-weighted SSFP (dwSSFP) signal has made it difficult to quantitatively determine the apparent diffusion coefficient (ADC). Here, a multistep method in which the T1, T2, and spin density (Mo) constants are first determined using a rapid mapping technique described previously is presented. Quantitative ADC can then be determined through a novel inversion of the appropriate signal model. The accuracy and precision of our proposed method (which we term DESPOD) was determined by comparing resulting ADC values from phantoms to those calculated from traditional diffusion-weighted echo planar imaging (dwEPI) images. Error within the DESPOD-derived ADC maps was found to be less than 3%, with good precision over a biologically relevant range of ADC values.
Keywords:apparent diffusion coefficient  steady‐state free precession  diffusion imaging  rapid volumetric imaging
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号