首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Hydrogen Exposure Temperature on Hydrogen Embrittlement in the Palladium–Copper Alloy System (Copper Content 5–25 wt.%)
Authors:Brandon Roy  Erin LaPointe  Andrew Holmes  Dillon Camarillo  Bonolo Jackson  Daniel Mathew  Andrew Craft
Affiliation:Department of Chemistry, University of Hartford, West Hartford, CT 06117, USA
Abstract:The yield strength, ultimate strength, and elongation/ductility properties of a series of palladium–copper alloys were characterized as a function of the temperature at which each alloy underwent absorption and desorption of hydrogen. The alloys studied ranged in copper content from 5 weight percent copper to 25 wt.% copper. Compared to alloy specimens that had been well-annealed in a vacuum and never exposed to hydrogen, alloys with copper content up to 15 wt.% showed strengthening and loss of ductility due to hydrogen exposure. In these alloys, it was found that the degree of strengthening and loss of ductility was dependent on the hydrogen exposure temperature, though this dependence decreased as the copper content of the alloy increased. For alloys with copper contents greater than 15 wt.%, hydrogen exposure had no discernible effect on the strength and ductility properties compared to the vacuum-annealed alloys, over the entire temperature range studied.
Keywords:palladium   copper   hydrogen   embrittlement   exposure temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号