首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid Data-Driven Deep Learning Framework for Material Mechanical Properties Prediction with the Focus on Dual-Phase Steel Microstructures
Authors:Ali Cheloee Darabi  Shima Rastgordani  Mohammadreza Khoshbin  Vinzenz Guski  Siegfried Schmauder
Affiliation:1.Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany;2.Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Lavizan, Tehran 1678815811, Iran
Abstract:A comprehensive approach to understand the mechanical behavior of materials involves costly and time-consuming experiments. Recent advances in machine learning and in the field of computational material science could significantly reduce the need for experiments by enabling the prediction of a material’s mechanical behavior. In this paper, a reliable data pipeline consisting of experimentally validated phase field simulations and finite element analysis was created to generate a dataset of dual-phase steel microstructures and mechanical behaviors under different heat treatment conditions. Afterwards, a deep learning-based method was presented, which was the hybridization of two well-known transfer-learning approaches, ResNet50 and VGG16. Hyper parameter optimization (HPO) and fine-tuning were also implemented to train and boost both methods for the hybrid network. By fusing the hybrid model and the feature extractor, the dual-phase steels’ yield stress, ultimate stress, and fracture strain under new treatment conditions were predicted with an error of less than 1%.
Keywords:deep learning   material properties   dual-phase steel   micromechanical modeling   phase field simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号