首页 | 本学科首页   官方微博 | 高级检索  
检索        

脊柱颈胸结合部C5~T2三维有限元建模与验证
引用本文:赵改平,方新果,王晨曦,柏磊磊,赵庆华,许世雄,陈二云.脊柱颈胸结合部C5~T2三维有限元建模与验证[J].医用生物力学,2015,30(1):56-61.
作者姓名:赵改平  方新果  王晨曦  柏磊磊  赵庆华  许世雄  陈二云
作者单位:上海理工大学 医疗器械与食品学院;上海理工大学 医疗器械与食品学院;上海理工大学 医疗器械与食品学院;上海理工大学 医疗器械与食品学院;上海市第一人民医院 骨科;复旦大学 力学与工程科学系;上海理工大学 能源与动力工程学院
基金项目:国家自然科学基金资助项目(51106099),上海市教委科研创新项目(12YZ109)
摘    要:目的基于CT图像数据建立人体脊柱颈胸结合部C5~T2的三维有限元模型,并验证模型的正确性和有效性。方法采用Mimics、Geomagic和Hypermesh软件对人体脊柱颈胸结合部C5~T2椎体进行三维重建、模型修复和有限元前处理,对模型顶面施加±0.5、1、1.5、2 N·m扭矩,用于模拟人体前屈和后伸活动时所产生的载荷作用,使用ANSYS软件计算脊柱颈胸结合部C5~T2节段在前屈和后伸承受扭矩载荷作用时的关节活动度(range of motion,ROM),将计算结果与前人研究结果进行对比分析。结果人体脊柱颈胸结合部C5~T2三维模型中C5~6、C6~7、C7~T1和T1~2各节段椎体在1 N·m载荷作用下,前屈时ROM分别为4.30°、3.21°、1.66°和1.41°,后伸时ROM分别为3.47°、2.86°、0.96°和0.92°。前屈时最大应力出现在椎体前缘,后伸时椎体后缘出现较大应力。ROM和应力分布的趋势与前人研究结果相一致。结论建立的脊柱颈胸结合部三维模型精确逼真,符合脊柱颈胸结合部的生物力学特性,模拟结果可为临床病理研究和颈胸部手术术式的评价提供理论依据。

关 键 词:颈椎  胸椎  颈胸结合部  有限元分析  力学特性
收稿时间:2014/4/22 0:00:00
修稿时间:2014/5/26 0:00:00

Establishment and validation for a 3D finite element model of cervicothoracic junction C5-T2
ZHAO Gai-ping,FANG Xin-guo,WANG Chen-xi,BAI Lei-lei,ZHAO Qing-hu,XU Shi-xiong and CHEN Er-yun.Establishment and validation for a 3D finite element model of cervicothoracic junction C5-T2[J].Journal of Medical Biomechanics,2015,30(1):56-61.
Authors:ZHAO Gai-ping  FANG Xin-guo  WANG Chen-xi  BAI Lei-lei  ZHAO Qing-hu  XU Shi-xiong and CHEN Er-yun
Institution:ZHAO Gai-ping;FANG Xin-guo;WANG Chen-xi;BAI Lei-lei;ZHAO Qing-hua;XU Shi-xiong;CHEN Er-yun;School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology;Department of Orthopedics,Shanghai First People’s Hospital;Department of Mechanics and Engineering Science,Fudan University;School of Energy and Power Engineering,University of Shanghai for Science and Technology;
Abstract:Objective To establish a 3D finite element model of cervicothoracic spinal segments C5-T2 based on CT images and test its validity and effectiveness. Methods By using the Mimics, Geomagic and Hypermesh software, the 3D model of cervicothoracic spinal segments C5-T2 was reconstructed, repaired and pre-processed. Moment of ±0.5, 1, 1.5, 2 N?m were applied on top of the model to simulate loads produced during the flexion and extension movement of human body. The range of motion (ROM) of the segments C5-T2 during flexion and extension was calculated by ANSYS, and the reliability of the model was verified by comparing the experimental results in the previous literature with the finite element analysis results obtained in this study. Results Under the moment of 1 N?m, the ROMs of C5-6, C6-7, C7-T1 and T1-2 during flexion were 4.30°,3.21°,1.66° and 1.41°, and those during extension were 3.47°, 2.86°, 0.96° and 0.92°, respectively. The maximum stress during flexion appeared on the front of the vertebral body, while that during extension appeared on the back of the vertebral body. The trends of ROM and stress distributions were consistent with results reported in the previous literature. Conclusions The 3D model established in this study is accurate and realistic, and conforms to biomechanical properties of the cervicothoracic spine. The simulation results can be further used to explore clinical pathology of the spine and provide theoretical references for evaluation on cervicothoracic spine surgery.
Keywords:Cervical vertebrae  Thoracic vertebrae  Cervicothoracic junction  Finite element analysis  Mechanical properties
本文献已被 CNKI 等数据库收录!
点击此处可从《医用生物力学》浏览原始摘要信息
点击此处可从《医用生物力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号