首页 | 本学科首页   官方微博 | 高级检索  
检索        


Contribution of germline BRCA1 and BRCA2 sequence alterations to breast cancer in Northern India
Authors:Sunita Saxena  Anurupa Chakraborty  Mishi Kaushal  Sanjeev Kotwal  Dinesh Bhatanager  Ravindar S Mohil  Chintamani Chintamani  Anil K Aggarwal  Veena K Sharma  Prakash C Sharma  Gilbert Lenoir  David E Goldgar  Csilla I Szabo
Institution:1. Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
3. Safdarjang Hospital, New Delhi, India
4. Department Of Pathology, L.L.R.M. Medical College, Meerut, India
5. Guru Govind Singh Indraprastha University, Kashmiri Gate, Delhi, India
6. Villejuif, Institut Gustave-Roissy, Paris, France
2. Unit of Genetic Epidemiology, International Agency for Research on Cancer, Lyon, France
7. Laboratory Medicine and Experimental Pathology, MayoClinic, Rochester, MN, USA
Abstract:

Background

A large number of distinct mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known regarding the role of these inherited susceptibility genes in breast cancer risk among Indian women. We investigated the distribution and the nature of BRCA1 and BRCA2 germline mutations and polymorphisms in a cohort of 204 Indian breast cancer patients and 140 age-matched controls.

Method

Cases were selected with regard to early onset disease (≤40 years) and family history of breast and ovarian cancer. Two hundred four breast cancer cases along with 140 age-matched controls were analyzed for mutations. All coding regions and exon-intron boundaries of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis followed by direct sequencing of detected variants.

Results

In total, 18 genetic alterations were identified. Three deleterious frame-shift mutations (185delAG in exon 2; 4184del4 and 3596del4 in exon 11) were identified in BRCA1, along with one missense mutation (K1667R), one 5'UTR alteration (22C>G), three intronic variants (IVS10-12delG, IVS13+2T>C, IVS7+38T>C) and one silent substitution (5154C>T). Similarly three pathogenic protein-truncating mutations (6376insAA in exon 11, 8576insC in exon19, and 9999delA in exon 27) along with one missense mutation (A2951T), four intronic alterations (IVS2+90T>A, IVS7+75A>T, IVS8+56C>T, IVS25+58insG) and one silent substitution (1593A>G) were identified in BRCA2. Four previously reported polymorphisms (K1183R, S1613G, and M1652I in BRCA1, and 7470A>G in BRCA2) were detected in both controls and breast cancer patients. Rare BRCA1/2 sequence alterations were observed in 15 out of 105 (14.2%) early-onset cases without family history and 11.7% (4/34) breast cancer cases with family history. Of these, six were pathogenic protein truncating mutations. In addition, several variants of uncertain clinical significance were identified. Among these are two missense variants, one alteration of a consensus splice donor sequence, and a variant that potentially disrupts translational initiation.

Conclusion

BRCA1 and BRCA2 mutations appear to account for a lower proportion of breast cancer patients at increased risk of harboring such mutations in Northern India (6/204, 2.9%) than has been reported in other populations. However, given the limited extent of reported family history among these patients, the observed mutation frequency is not dissimilar from that reported in other cohorts of early onset breast cancer patients. Several of the identified mutations are unique and novel to Indian patients.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号