首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical impedance of cultured endothelium under fluid flow
Authors:DePaola N  Phelps J E  Florez L  Keese C R  Minnear F L  Giaever I  Vincent P
Affiliation:(1) Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY;(2) Department of Biology, Rensselaer Polytechnic Institute, Troy, NY;(3) Center for Cardiovascular Sciences, Albany Medical College, Albany, NY;(4) Department of Physics, Rensselaer Polytechnic Institute, Troy, NY
Abstract:The morphological and functional status of organs, tissues, and cells can be assessed by evaluating their electrical impedance. Fluid shear stress regulates the morphology and function of endothelial cells in vitro. In this study, an electrical biosensor was used to investigate the dynamics of flow-induced alterations in endothelial cell morphology in vitro. Quantitative, real-time changes in the electrical impedance of endothelial monolayers were evaluated using a modified electric cell-substrate impedance sensing (ECIS) system. This ECIS/Flow system allows for a continuous evaluation of the cell monolayer impedance upon exposure to physiological fluid shear stress forces. Bovine aortic endothelial cells grown to confluence on thin film gold electrodes were exposed to fluid shear stress of 10 dynes/cm2 for a single uninterrupted 5 h time period or for two consecutive 30 min time periods separated by a 2 h no-flow interval. At the onset of flow, the monolayer electrical resistance sharply increased reaching 1.2 to 1.3 times the baseline in about 15 min followed by a sustained decrease in resistance to 1.1 and 0.85 times the baseline value after 30 min and 5 h of flow, respectively. The capacitance decreased at the onset of flow, started to recover after 15 min and after slightly overshooting the baseline values, decreased again with a prolonged exposure to flow. Measured changes in capacitance were in the order of 5% of the baseline values. The observed changes in endothelial impedance were reversible upon flow removal with a recovery rate that varied with the duration of the preceding flow exposure. These results demonstrate that the impedance of endothelial monolayers changes dynamically with flow indicating morphological and/or functional changes in the cell layer. This in vitro model system (ECIS/Flow) may be a very useful tool in the quantitative evaluation of flow-induced dynamic changes in cultured cells when used in conjunction with biological or biochemical assays able to determine the nature and mechanisms of the observed changes. © 2001 Biomedical Engineering Society.PAC01: 8719Nn, 8719Uv, 8717-d
Keywords:Endothelial cells  Electrical impedance  Shear stress  Flow
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号