首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of a poly(propylene fumarate) foaming cement on the healing of bone defects.
Authors:K U Lewandrowski  M V Cattaneo  J D Gresser  D L Wise  R L White  L Bonassar  D J Trantolo
Affiliation:Orthopaedic Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, USA.
Abstract:Regeneration of skeletal tissues has been recognized as a new means for reconstruction of skeletal defects. We investigated the feasibility of an injectable and expandable porous implant system for in situ regeneration of bone. Therefore, a composite biodegradable foaming cement based on poly(propylene fumarate) was injected into a critical size defect made in the rat tibia. Animals were divided into two groups comparing the foam in the experimental group against sham-operated animals having a drill hole but no implant in the control group. Eight animals were included in each group. Animals were sacrificed at 1, 3, and 7 weeks postoperatively. Implantation sites were then evaluated with histologic and histomorphometric methods. Results of this study showed that defects did not heal in sham-operated animals. In the experimental group, metaphyseal and cortical defects healed within the first postoperative week by formation of immature woven bone. At the site of the cortical drill hole defect, healing was noted to progress to complete closure by formation of mature bone. Histomorphometry corroborated these findings and showed that metaphyseal bone remodeling peaked at 1 week postoperatively and then decreased as healing of the cortical defect progressed. This suggests that near-complete restoration of the original state of the tibial bone occurred in this animal model supporting the concept of in situ bone regeneration by application of engineered biodegradable porous scaffolds. () ()
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号