首页 | 本学科首页   官方微博 | 高级检索  
检索        


Chronic tooth pulp inflammation causes transient and persistent expression of Fos in dynorphin-rich regions of rat brainstem
Authors:Byers M R  Chudler E H  Iadarola M J
Institution:Department of Anesthesiology, University of Washington, Seattle, WA 98195-6540, USA. byersm@u.washington.edu
Abstract:We have analyzed central Fos immunoreactivity (Fos-IR) brainstems of adult rats after three clinically relevant dental injuries: filled dentin (DF) cavities that cause mild pulp injury and heal within 1-2 weeks; open pulp exposures (PX) that cause gradual pulp loss and subsequent periodontal lesions; and filled pulp exposures (PXF). By 1 week after DF cavities, no Fos-IR remained except for sites such as lateral-ventral periolivary nucleus (LVPO) that had Fos-IR in all rats including controls. PX injury induced (1) a delayed transient expression of Fos at 1-2 weeks at three loci (ipsilateral neurons in dorsomedial nucleus oralis, paratrigeminal nucleus, and trigeminal tract), (2) persistent ipsilateral Fos for at least 4 weeks after injury in dynorphin (Dyn)-rich regions (rostral lateral solitary nucleus, periobex dorsal nucleus caudalis), and (3) late Fos-IR at 2-4 weeks (bilateral superficial cervical dorsal horn, contralateral dorsal nucleus caudalis, contralateral rostral lateral solitary nucleus). Rats with PXF injury were examined at 2 weeks, and they had greater numbers and more extensive rostro-caudal distribution of Fos neurons than the PX group. One week after PX injury, Fos-IR neurons were found in regions with strong Dyn-IR central fibers. Co-expression of Dyn and Fos was found in some unusually large neurons of the ipsilateral rostral lateral solitary nucleus, trigeminal tract, and dorsal nucleus caudalis. Immunocytochemistry for the p75 low affinity neurotrophin receptor (p75NTR) or for calcitonin gene-related peptide (CGRP) showed no consistent change in trigeminal central endings in any Fos-reactive brainstem areas, despite the extensive structural and cytochemical reorganization of the peripheral endings of the dental neurons. The Fos responses of central neurons to tooth injury have some unusual temporal and spatial patterns in adult rats compared to other trigeminal injury models.
Keywords:Dental injury  Pain  Lateral solitary nucleus  Nucleus oralis  Nucleus caudalis  Trigeminal tract interstitial cell
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号