首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental Study on Optimization of Phosphogypsum Suspension Decomposition Conditions under Double Catalysis
Authors:Pinjing Xu  Hui Li  Yanxin Chen
Affiliation:College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (H.L.); (Y.C.)
Abstract:Phosphogypsum (PG) is not only a solid waste discharged from the phosphate fertilizer industry, but also a valuable resource. After high-temperature heat treatment, it can be decomposed into SO2 and CaO; the former can be used to produce sulfuric acid, and the latter can be used as building materials. In this paper, the catalytic thermal decomposition conditions of phosphogypsum were optimized, and the effects of the reaction temperature, reaction atmosphere, reaction time and carbon powder content on the decomposition of phosphogypsum were studied. The research shows that the synergistic effect of carbon powder and CO reducing atmosphere can effectively reduce the decomposition temperature of phosphogypsum. According to the results of the orthogonal test under simulated suspended laboratory conditions, the factors affecting the decomposition rate of phosphogypsum are temperature, time, atmosphere and carbon powder content in turn, and the factors affecting the desulfurization rate are time, temperature, atmosphere and carbon powder content in turn. Under laboratory conditions, the highest decomposition rate and desulfurization rate of phosphogypsum are 97.73% and 97.2%, and the corresponding reaction conditions are as follows: calcination temperature is 1180 °C, calcination time is 15 min, carbon powder content is 4%, and CO concentration is 6%. The results of thermal analysis of phosphogypsum at different temperature rising rates show that the higher the temperature rising rate, the higher the initial temperature of decomposition reaction and the temperature of maximum thermal decomposition rate, but the increase in the temperature rising rate will not reduce the decomposition rate of phosphogypsum.
Keywords:phosphogypsum   suspended state decomposition   decomposition rate   desulfurization rate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号