Absorption,tissue distribution and elimination of 4-[(3)h]-epigallocatechin gallate in beagle dogs |
| |
Authors: | Swezey Robert R Aldridge Daphne E LeValley Susanna E Crowell James A Hara Yukihiko Green Carol E |
| |
Affiliation: | Department of Drug Metabolism and Pharmacokinetics, SRI International, Menlo Park, California 94025, USA. robert.swezey@sri.com |
| |
Abstract: | Polyphenols found in tea are potent antioxidants and have inhibitory activity against tumorigenicity. The purpose of the described study was to assess the absorption, tissue distribution, and elimination of epigallocatechin gallate (EGCG), the principal catechin found in green tea, in a nonrodent species. 4-[(3)H]-EGCG was administered to beagle dogs by intravenous (IV) and oral routes. Following IV administration of 25 mg/kg, radioactivity in the bloodstream resided predominantly in the plasma. Distribution occurred during the first hour, and the plasma levels of total radioactivity declined with a mean half-life of approximately 7 hours. The apparent volume of distribution (0.65 l/kg) indicated wide distribution, and the total body clearance (1.01 ml/min-kg) was low. A subsequent single oral dose (250 mg/kg) was rapidly absorbed, with peak plasma levels at about 1 hour after administration, followed by elimination with a mean half-life of 8.61 hours. The mean area under the curve (AUC) for total radioactivity was approximately 20% of the value following IV administration (corrected for dose administered). Excretion of radioactivity in the feces predominated over urinary excretion following both IV and oral administration of [(3)H]-EGCG. Tissue distribution was determined 1 hour after an IV dose (25 mg/kg) administered after 27 days of oral treatment with EGCG (250 mg/kg/day) to mimic chronic consumption of tea. Radioactivity was distributed to a variety of epithelial tissues; the highest concentrations were observed in the liver and gastrointestinal tract tissues. Repeat dose oral administration of EGCG resulted in significantly lower blood radioactivity compared to the concentration following a single dose. These results are generally in accord with previous studies in rodents and indicate that, after oral administration, EGCG (as parent compound and metabolites) is widely distributed to tissues where it can exert a chemopreventive effect. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|