首页 | 本学科首页   官方微博 | 高级检索  
     


KCC2 mediates NH4+ uptake in cultured rat brain neurons
Authors:Liu Xiuxin  Titz Stefan  Lewen Andrea  Misgeld Ulrich
Affiliation:Institut für Physiologie und Pathophysiologie und Interdisziplin?res Zentrum für Neurowissenschaften, Universit?t Heidelberg, D-69120 Heidelberg, Germany.
Abstract:Elevated levels of NH4+ in the brain impair neuronal function. We studied the effects of NH4+ on postsynaptic inhibition of cultured rat brain neurons using whole cell recording under nominally HCO3- -free conditions. Application of NH4+ shifted the reversal potentials for spontaneous inhibitory postsynaptic currents and currents elicited by dendritic GABA applications in a positive direction because [Cl-]i increased. The positive shift of the reversal potentials of GABA-induced Cl- currents was equal on equimolar elevation of [NH4+]o or [K+]o, respectively. The NH4+-induced increase in [Cl-]i was reversed by an inhibitor of cation-anion cotransport, furosemide (0.1 mM), but not by bumetanide (0.01 mM) or by replacement of [Na+]o by Li+. We conclude that neuron-specific K-Cl cotransporter (KCC2) transports NH4+ similar to K+. Despite this fact, the small increase of [NH4+]o during metabolic encephalopathies will barely elevate [Cl-]i. However, an impairment of neuronal function may result because KCC2 provides a pathway to accumulate NH4+, and thereby, a continuous acid load to neurons.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号