首页 | 本学科首页   官方微博 | 高级检索  
     


Prion domain interaction responsible for species discrimination in yeast [PSI+] transmission
Authors:Hara Hideyuki  Nakayashiki Toru  Crist Colin G  Nakamura Yoshikazu
Affiliation:Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
Abstract:BACKGROUND: The yeast [PSI+] factor is transmitted by a prion mechanism involving self-propagating Sup35 aggregates. As with mammalian prions, a species barrier prevents prion transmission between yeast species. The N-terminal of Sup35 of Saccharomyces cerevisiae, necessary for [PSI+], contains two species-signature elements-a Gln/Asn-rich region (residues 1-41; designated NQ) that is followed by oligopeptide repeats (designated NR). RESULTS: In this study, we show that S. cerevisiae[PSI+] is transmissible through plasmid shuffling and cytoplasmic transfer to heterotypic Sup35s whose NQ is replaced with the S. cerevisiae NQ. In addition to homology, the N-terminal location is essential for NQ mediated susceptibility to [PSI+] transmission amongst heterotypic Sup35s. In vitro, a swap of NQ of S. cerevisiae Sup35 led to cross seeding of amyloid formation. CONCLUSIONS: These findings suggest that NQ discriminates self from non-self, and is sufficient to initiate [PSI+] transmission irrespective of whether NR is heterotypic. NR as well as NQ alone coalesces into existing [PSI+] aggregates, showing their independent potentials to interact with the identical sequence in the [PSI+] conformer. The role of NQ and NR in [PSI+] prion formation is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号